skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ni, Meng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The proton‐conducting solid oxide electrolysis cell (H‐SOEC) is a promising device that converts electrical energy to chemical energy. H‐SOECs have been actively studied in the past few years, due to their advantages over oxygen‐ion‐conducting solid oxide electrolysis cells (O‐SOECs), such as lower operation temperature, relatively lower activation energy, and easier gas separation. A critical overview of recent progress in H‐SOECs is presented, focusing particularly on the period from 2014 to 2018. This review focuses on three aspects of H‐SOECs, namely, the materials, modeling, and current leakage in proton conducting oxide electrolytes. Specifically, the current leakage in proton conducting oxides, which is often neglected, leads to two problems in the studies of H‐SOECs. One is the distortion of the electrochemical impedance spectra and the other is low faradaic efficiency of electrolysis. Based on the comprehensive and critical discussion in these three sections, challenges in the development of H‐SOECs are highlighted and prospective research in H‐SOECs is outlined. 
    more » « less